超宽禁带半导体材料与器件研究进展

超宽禁带半导体材料与器件研究进展

扩展阅读

[1] C. Zhao et al., “Preparation of high-thickness n--Ga2O3 film by MOCVD,” in Coatings, vol. 12, no. 5, 645, May. 2022, doi: 10.3390/coatings12050645.

[2] Y. Wang, et al., “Enhancing the quality of homoepitaxial (-201) β-Ga2O3 thin film by MOCVD with in situ pulsed indium,” in Applied Physics Letters, vol. 124, no. 7, 072105, Feb. 2024, doi: 10.1063/5.0189586.

[3] Y. Wang et al., “Optimization quality for indium pulse-assisted of β-Ga2O3 thin film on sapphire surface,” in Ceramics International, vol. 49, no. 23, pp. 37506-37512, Dec. 2023, doi: 10.1016/j.ceramint.2023.09.077.

[4] P. Ma et al., “Two-step growth of β-Ga2O3 on c-plane sapphire using MOCVD for solar-blind photodetector,” in Journal of Semiconductors, vol. 45, no. 2, 022502, Apr. 2024, doi: 10.1088/1674-4926/45/2/022502.

[5] J. Li et al., “Breakdown up to 13.5 kV in NiO/β-Ga2O3 vertical heterojunction rectifiers,” in ECS Journal of Solid State Science and Technology, vol. 13, no. 3, 035003, Mar. 2024, doi: 10.1149/2162-8777/ad3457.

[6] J. Zhang et al., “Ultra-wide bandgap semiconductor Ga2O3 power diodes,” in Nature Communications, vol. 13, no. 1, 3900, Jul. 2022, doi: 10.1038/s41467-022-31664-y.

[7] Nolan S. Hendricks et al., “Vertical metal-dielectric-semiconductor diode on (001) β-Ga2O3 with high-κ TiO2 interlayer exhibiting reduced turn-on voltage and leakage current and improved breakdown,” in Applied Physics Express, vol. 16, no. 7, 071002, Jul. 2023, doi: 10.35848/1882-0786/ace0f3.

[8] Y. He et al., “Research on the β-Ga2O3 Schottky barrier diodes with oxygen-containing plasma treatment,” in Applied Physics Letters, vol. 122, no. 16, 163503, Apr. 2023, doi: 10.1063/5.0145659.

[9] Q. Yan et al., “Low density of interface trap states and temperature dependence study of Ga2O3 Schottky barrier diode with p-NiOx termination,” in Applied Physics Letters, vol. 120, no. 9, 092106, Feb. 2022, doi: 10.1063/5.0082377.

[10] F. Otsuka et al., “Large-size (17x1.7 mm2) β-Ga2O3 field-plated trench MOS-type Schottky barrier diodes with 1.2 kV breakdown voltage and 109 high on/off current ratio,” in Applied Physics Express, vol. 15, no. 1, 016501, Jan. 2022, doi: 10.35848/1882-0786/ac4080.

[11] A. Bhattacharyya et al., “High-mobility tri-gate β-Ga2O3 MESFETs with a power figure of merit over 0.9 GW/cm2,” in IEEE Electron Device Letters, vol. 43, no. 10, pp. 1637-1640, Oct. 2022, doi: 10.1109/LED.2022.3196305.

[12] C. Wang et al., “Hysteresis-free and μs-switching of D/E-modes Ga2O3 hetero-junction FETs with the BV2/Ron,sp of 0.74/0.28 GW/cm2,” in Applied Physics Letters, vol. 120, no. 11, 112101, Mar. 2022, doi: 10.1063/5.0084804.

[13] K. D. Chabak et al., “Recessed-gate enhancement-mode β-Ga2O3 MOSFETs,” in IEEE Electron Device Letters, vol. 39, no. 1, pp. 67-70, Jan. 2018, doi: 10.1109/LED.2017.2779867.

[14] X. Zhou et al., “Normally-off β-Ga2O3 power heterojunction field-effect-transistor realized by p-NiO and recessed-gate,”2022 IEEE 34th International Symposium on Power Semiconductor Devices and ICs (ISPSD). Vancouver, BC, Canada, 2022, pp. 101-104, doi: 10.1109/ISPSD49238.2022.9813678.

[15] X. Wang et al., “An E-mode β-Ga2O3 metal-heterojunction composite field effect transistor with a record high P-FOM of 0.73 GW/cm2,” 2023 35th International Symposium on Power Semiconductor Devices and ICs (ISPSD), Hong Kong, 2023, pp. 390-393, doi: 10.1109/ISPSD57135.2023.10147570.

[16] A. Vaidya et al., “Enhancement mode β-(AlxGa1-x)2O3/Ga2O3 heterostructure FET (HFET) with high transconductance and cutoff frequency,” in IEEE Electron Device Letters, vol. 42, no. 10, pp. 1444-1447, Oct. 2021, doi: 10.1109/LED.2021.3104256.

[17] M. Zhou et al., “1.1 A/mm β-Ga2O3-on-SiC RF MOSFETs with 2.3 W/mm Pout and 30% PAE at 2 GHz and fT/fmax of 27.6/57 GHz,” 2023 International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 2023, pp. 1-4, doi: 10.1109/IEDM45741.2023.10413782.

[18] Q. Han et al., “Design of a novel large volume cubic high pressure apparatus for raising the yield and quality of synthetic diamond,” in Journal of Crystal Growth, vol. 422, pp. 29-35, Jul. 2015, doi: 10.1016/j.jcrysgro. 2015.04.028.

[19] H. Yamada et al., “A 2-in. mosaic wafer made of a single-crystal diamond,” in Applied Physics Letters, vol. 104, no. 10, 102110, Mar. 2014, doi: 10.1063/1.4868720.

[20] Z. Ren et al., “Growth and characterization of the laterally enlarged single crystal diamond grown by microwave plasma chemical vapor deposition,” in Chinese Physics Letters, vol. 35, no. 7, 078101, Jun 2018, doi: 10.1088/0256-307X/35/7/078101.

[21] Z. Ren et al., “Multiple enlarged growth of single crystal diamond by MPCVD with PCD-rimless top surface,” in Chinese physics B, vol. 28, no. 12, 128103, Nov. 2019, doi: 10.1088/1674-1056/ab53cd.

[22] Y. Feng et al., “Heteroepitaxial nucleation of diamond on Ir(100)/MgO(100) substrate by bias enhanced microwave plasma chemical vapor deposition method,” in Journal of Synthetic Crystals, vol. 44, no. 4, pp. 896-901, Apr. 2015, doi: 10.16553/j.cnki.issn1000-985x.2015.04.009.

[23] M. Schreck et al., “Ion bombardment induced buried lateral growth: The key mechanism for the synthesis of single crystal diamond wafers,” in Scientific Reports, vol. 7, 44462, Mar. 2017, doi: 10.1038/srep44462.

[24]苏凯. 高性能CVD金刚石核探测器及相关电子器件研究. 西安电子科技大学, 2022. doi: 10.27389/d.cnki.gxadu.2020.003386.

[25] P. Sittimart et al., “Enhanced in-plane uniformity and breakdown strength of diamond Schottky barrier diodes fabricated on heteroepitaxial substrates,” in Japanese Journal of Applied Physics, vol. 60, no. SB, SBBD05, May 2021, doi: 10.35848/1347-4065/abd537.

[26] N. C. Saha et al., “875-MW/cm² low-resistance NO2 p-type doped chemical mechanical planarized diamond MOSFETs,” in IEEE Electron Device Letters, vol. 43, no. 5, pp. 777-780, May 2022, doi: 10.1109/LED.2022.3164603.

[27] Q. He et al., “High mobility normally-OFF hydrogenated diamond field effect transistors with BaF2 gate insulator formed by electron beam evaporator,” in IEEE Transactions on Electron Devices, vol. 69, no. 3, pp. 1206-1210, Mar. 2022, doi: 10.1109/TED.2022.3147738.

[28] M. Zhang et al., “Electrical properties of cerium hexaboride gate hydrogen-terminated diamond field effect transistor with normally-off characteristics,” in Carbon, vol. 201, pp. 71-75, Sep. 2022, doi: 10.1016/j.carbon.2022.08.056.

[29] K. Su et al., “High performance hydrogen/oxygen terminated CVD single crystal diamond radiation detector,” in Applied Physics Letters, vol. 116, no. 9, 092104, Mar. 2020, doi: 10.1063/1.5135105.

[30] J. Wang et al., “Group-III nitride heteroepitaxial films approaching bulk-class quality,” in Nature materials, vol. 22, no. 7, pp. 853-859, Jun. 2023, doi: 10.1038/s41563-023-01573-6.

[31]史泽堃. 柔性自支撑AlN薄膜极性调控与应变工程的研究. 西安电子科技大学, 2024. doi: 10.27389/d.cnki.gxadu.2022.003463.

[32] J. Zhu et al., “Improved interface and transport properties of AlGaN/GaN MIS-HEMTs with PEALD-grown AlN gate dielectric,” in IEEE Transactions on Electron device, vol. 62, no. 2, pp. 512-518, Feb. 2015, doi: 10.1109/TED.2014.2377781.

[33] D. H. Mudiyanselage et al., “High-voltage AlN Schottky barrier diodes on bulk AlN substrates by MOCVD,” in Applied Physics Express, vol 17, no. 1, 014005, 2024, doi: 10.35848/1882-0786/ad15f4.

[34] T. Kumabe et al., “Demonstration of AlGaN-on-AlN pn diodes with dopant-free distributed polarization doping,” in IEEE Transactions on Electron Devices, vol 71, no. 5, pp. 3396-3402, Feb. 2024, doi: 10.1109/TED.2024.3367314.

[35] F. Liu et al., “Record peak current density of over 1500 kA/cm2 in highly scaled AlN/GaN double-barrier resonant tunneling diodes on free-standing GaN substrates,” in Applied Physics Letters, vol 124, no. 7, 073501, Feb. 2024, doi: 10.1063/5.0180145.

[36] S. Liu et al., “Improved breakdown voltage and low damage E-mode operation of AlON/AlN/GaN HEMTs using plasma oxidation treatment,” in IEEE Electron Device Letters, vol 43, no. 10, pp. 1621-1624, Oct. 2022, doi: 10.1109/LED.2022.3203164.

[37] L. Yang et al., “AlN/GaN HEMTs with fmax exceeding 300 GHz by using Ge-doped n++ GaN Ohmic contacts,” in ACS Applied Electronic Materials, vol. 5, no. 9, pp. 4786-4791, Sep. 2023, doi: 10.1021/acsaelm.3c00555.

💎 相关推荐

征途经久不衰14年之道,对话征途系列端游负责人赵剑枫
同是比目鱼,为什么有的叫鮃鱼有的叫鲽鱼?
365体育黑钱吗

同是比目鱼,为什么有的叫鮃鱼有的叫鲽鱼?

📅 07-12 👁️ 569
医疗扫黑风暴中的“莆田系”,何去何从
365体育黑钱吗

医疗扫黑风暴中的“莆田系”,何去何从

📅 08-11 👁️ 5996